

Mahidol University

Faculty of Veterinary Science

Never Overlook Leptospirosis in Dogs: Practical Diagnosis, Treatment & Prevention

Walasinee Sakcamduang DVM, PhD, DTBVM, DAiCVIM

Department of Clinical Sciences and Public Health

Faculty of Veterinary Science, Mahidol University

1 April 2021

Why it is important?

- Both dogs and cats can shed leptospires in their urine without showing clinical signs of the disease (Rojas et al. 2010, Fenimore et al. 2012, Llewellyn et al. 2013, Rodriguez et al. 2014)
- Public health concern!!!

Classification and Nomenclature of

Leptospira spp.

2 Species

- Leptospira interrogans sensu lato (pathogenic strains)
- Leptospira biflexa sensu lato (saprophytic, non-pathogenic strains)

How to write according to nomenclature

o Leptospira interrogans serovar Australis

o Leptospira biflexa serovar Patoc

FIG 1. Scanning electron micrograph of *Leptospira interrogans* strain RGA. Image source: Public Health Image Library CDC/NCID/Rob Weyant (http://phil.cdc.gov/phil/details.asp)

Definitions

- Serovar: member of the genus Leptospira, which reacts with a specific monoclonal antiserum. Antisera are specific to immunogenic carbohydrate antigens of leptospiral lipopolysaccharide.
- Serogroup: group of antigenically closely related leptospiral serovars. Members of the same serogroup agglutinate when incubated with patient serum containing antibodies to one serovar of the same serogroup.
- Strain: specific isolate of a defined leptospiral serovar

	Serogroups	Serovars	Strains
Leptospira	Pyrogenes	Manila	LT 398
interrogans	Pyrogenes	Pyrogenes	Salinem
0	Canicola	Canicola	Hond Utrecht
	Autumnalis	Autumnalis	IV
	Bataviae	Losbanos	Akiyami A
	Hebdomadis	Hebdomadis	LT 101-69
	Australis	Australis	Akiyami B
	Icterohaemorrhagiae	Copenhageni	Akiyami C
	Icterohaemorrhagiae	Icterohaemorrhagiae	M20
	Icterohaemorrhagiae	Icterohaemorrhagiae	RGA
	Pomona	Pomona	Ictero No. 1
	Sejroe	Hardjo	Pomona
	Grippotyphosa	Ratnapura	Hardjoprajitno UP-BL-FR13
Leptospira	Tarassovi	Tarassovi	Perepelitsin
borgpetersenii	Javanica	Poi	Poi
Leptospira kirschneri	Grippotyphosa	Grippotyphosa	Moskva V
Leptospira	Semaranga	Semaranga	Veldrat
meyeri			Semaranga 173
Leptospira biflexa	Semaranga	Patoc	Patoc 1

Zamora, 2015

Background – *Leptospira interrogans*

- Over 250 pathogenic serovars
- Serovar distribution in dogs

o Historically

- Canicola, Icterohaemorrhagiae
- 019 serovars reported in Thailand

Anhoa, Australis, Ballum, Bataviae, Bratislava, Broomi, Canicola, Copenhageni, Coxi, Grippotyphosa, Haemolytica, Icterohaemorrhagiae, Khorat, Paidjan, Patoc, Pyrogenes, Rachmati, Saxkoebing, Sejroe

Altheimer et al. BMC Veterinary Research (2020) 16:89 https://doi.org/10.1186/s12917-020-2230-0

BMC Veterinary Research

RESEARCH ARTICLE

Leptospira infection and shedding in dogs in Thailand

Open Access

Kerstin Altheimer^{1*}⁽⁶⁾, Prapaporn Jongwattanapisan², Supol Luengyosluechakul², Rosama Pusoonthornthum², Nuvee Prapasarakul³, Alongkorn Kurilung³, Els M. Broens⁴, Jaap A. Wagenaar^{4,5}, Marga G. A. Goris⁶, Ahmed A. Ahmed⁶, Nikola Pantchev⁷, Sven Reese⁸ and Katrin Hartmann¹

FIG 2. Transmission cycle of pathogenic *Leptospira* spp. Pathogenic leptospires are maintained in the environment by wild or domestic reservoir hosts. Incidental hosts become infected via either direct contact with reservoir hosts or contaminated soil and surface water. Cats are probably more likely to become infected via contact with prey due to their natural aversion to water. The role of dogs and cats as reservoir hosts requires further study

> European consensus statement on leptospirosis in dogs and cats, 2015

Epidemiology

- Definitive or reservoir host
- Chronic colonization of renal tubules
- Infected at young age
- No clinical signs or chronic clinical disease

Epidemiology

Table 3: Typical reservoir hosts of common leptospiral serovars (adapted from Bharti *et al.*, 2003).

Reservoir host	Host-adapted serovars
Pig	Pomona, Tarassovi
Cattle	Hardjo, Pomona
Horse	Bratislava
Dog	Canicola
Sheep	Hardjo
Rat	lcterohaemorrhagiae, Copenhageni
Mouse	Ballum, Arborea, Bim
Bat	Cynopteri, Wolffi

European consensus statement on leptospirosis in dogs and cats, 2015

Epidemiology

- Incidental host exposure

 Contaminated water or moist soil
 Direct contact with contaminated urine
 - The bacteria survives but does not replicate outside the host

Pathogenesis

- Enter to the body through small cuts or abrasions,
 via mucous membranes
- Spread via the blood
- Multiply and reach target tissues such as the liver and kidneys
- Damage to the endothelium of small blood vessels leading to localized ischemia in organs

Why is leptospirosis problematic and overlooked?

Risk factors: inconclusive

 \odot Ingestion of raw meat

- o Expose or drink from rivers
- \circ Roaming
- o Access to sewage
- o Contact with rodent
- Nonspecific clinical signs
 No signs to life threatening

Table 2. Clinical signs and thoracic radiographs insurviving (group 1) and non-surviving (group 2) dogs withleptospirosis on admission day

Parameter	Survivors group 1 (n=67) n (%)	Non-survivors group 2 (n=32) n (%)
Lethargy	64 (96)	31 (97)
Anorexia	59 (88)	28 (88)
Vomiting	56 (84)	28 (88)
Abdominal pain	26 (39)	13 (41)
Diarrhoea	22 (33)	16 (50)
Oliguria	11 (16)	16 (50)
Dyspnoea grade 1*	7 (10)	6 (19)
Dyspnoea grade 2 ⁺	12 (18)	25 (78)
Delayed capillary refill time	7 (10)	11 (34)
Pallor	12 (18)	5 (16)
Fever	10 (15)	5 (16)
Hypothermia	11 (16)	4 (13)
Icterus	2 (3)	8 (25)
Lymphadenopathy	6 (9)	4 (13)
Stiff gait	6 (9)	2 (7)
Severe thoracic radiographic abnormalities [†]	8 (12)	16 (50)

*Respiratory rate of >35/minute

†Respiratory rate of > 40/minute, open mouth breathing, cyanotic mucous membranes, with or without haemoptysis

†Generalized severe reticulonodular interstitial pattern with patchy alveolar consolidations

Common clinical manifestations

- Lethargy
- Polydipsia and polyuria
- Oliguria or anuria
- Altered hydration status (overhydration with oliguria/anuria or dehydration with polyuria)
- Gastrointestinal abnormalities (decreased appetite, vomiting, diarrhea)
- Icterus
- Bleeding tendency (petechia, melena, hematochezia, epistaxis)
- Tachypnea
- Conjunctivitis

- Lethargy
- Fever
- Lameness
- Ocular signs (uveitis)
- Bleeding disorder
- Neurologic signs

Table 3. Laboratory parameters in surviving (group 1) and non-surviving (group 2) dogs with leptospirosis (at the time of maximal deviation from the reference range)

Parameters	Survivors group 1 (n=67) median (range)	Non-survivors group : (n=32) median (range)
Platelets (G/L) (n=99)	98 (7 to 478)	50 (5 to 639)
Haematocrit (L/L) (n=99)	0·31 (0·16 to 0·65)	0.33 (0.2 to 0.5)
Leucocytes (G/L) (n=99)	24·7 (9·1 to 87·9)	23·1 (6·6 to 104)
aPTT (s) (n=75)	18·1 (9·2 to 31·4)	21 (12·1 to 43)
PT (s) (n=76)	18·7 (14·3 to 50)	18·6 (12 to 31·2)
Creatinine (µmol/L) (n=99)	300 (70 to 1608)	635 (137 to 1273)
Urea (mmol/L) (n=98)	35·8 (4·7 to 111)	61.6 (7.6 to 300)
ALT (U/L) (n=97)	142 (36 to 16,176)	173 (20 to 757)
AP (U/L) (n=97)	238 (23 to 4590)	343 (33 to 3298)
AST (U/L) (n=93)	72 (20 to 16,733)	180 (18 to 1499)
Bilirubin (µmol/L) (n=97)	11·4 (1·4 to 604)	28 (3 to 765)
Albumin (g/L) (n=94)	27 (19 to 35)	25 (21 to 47)
Total protein (g/L) (n=97)	74 (40 to 98)	68 (41 to 90)
Sodium (mmol/L) (n=99)	136 (114 to 162)	134 (118 to 149)
Chloride (mmol/L) (n=44)	99 (81 to 124)	97 (87 to 108)
Phosphate (mmol/L) (n=97)	2.6 (0.73 to 9.3)	5·0 (1·3 to 10·1)
Potassium (mmol/L) (n=99)	2·9 (1·7 to 6·0)	3.8 (2.3 to 6.9)
Calcium (mmol/L) (n=96)	2·5 (1·0 to 3·9)	2.6 (1.6 to 3.8)
Urine protein/creatinine ratio (n=64)	2·1 (0·24 to 18·4)	2.5 (0.45 to 11.3)

Knöpfler et al 2017

Laboratory findings (n=99)

Tests	%
Thrombocytopenia	63
Anemia	63
Leukocytosis	57
Prolonged aPTT	53
Prolong PT	22
Increased BUN	84
Increased creatinine	81
Hyperbilirubinemia	69
Increased ALP	68
Increased ALT	54
Hypoalbuminemia	55
Hyperphosphatemia	67

Knöpfler et al 2017

Probably thinking of *E.canis*

- Thrombocytopenia
- Nonregenerative anemia
- Leukopenia
- Lymphocytosis
- Pancytopenia
- Hyperglobulinemia
- Hypoalbuminemia
- Increased ALT
- Increased ALP

Clues for diagnosis

- Non specific clinical manifestations, hematology and serum biochemistry!!!
- Suspect if
 - o Signs of vasculitis
 - Acute kidney injury +/- hepatic injury
 - \circ Fever
 - o Pulmonary hemorrhage
 - o Uveitis
 - 0 Myositis
 - o Reproductive failure

Do you think diagnostic imaging necessary?

Wichlow of the Land

https://todaysveterin arypractice.com/dia gnosis-andtreatment-ofleptospirosis-in-dogs/

USD

https://todaysveterinarypractice.com/diagnosis-and-treatment-of-leptospirosis-in-dogs/

Thoracic radiography

- Abnormality reported 70% of cases (Knöpfler et al 2017)
- Abnormalities found in with or without clinical signs
- Most common: mild to moderate interstitial pattern
- Pulmonary hemorrhage syndrome: severe nodular interstitial to alveolar pattern

Abdominal ultrasonography

- 85-100% found nonspecific changes associated with kidney injury
 - o Increased cortical echogenicity
 - Renomegaly
 - OMild pyelectasia
 - Medullary rim sign
 - o Perirenal effusion

FIG. 3. Kidney from figure 2 in a water bath demonstrating the medullary rim sign (open arrow) and the chronic depressed infarct (white arrow).

Abdominal ultrasonography

Hepatic changes

O Hypoechoic parenchyma

Hepatomegaly

o Evidence of biliary sludge

Diagnostic tests

Detect bacteria directly
 OCulture

o Dark field microscopy

Timing of specimen collection & optimum specimens to be submitted

oPCR for bacterial DNA

Detect Ab against Leptospira

• Microscopic agglutination test (MAT)

Point-of-care assays

Bacterial culture

Technically difficult

o Need special media

o Culture incubation times: months

 \circ Recommendation

- First 10 days: blood
- Later: urine

Not routinely use in clinical practice

Dark field microscopy

https://www.youtube.com/watch?v=3UD9B3_Vq3o&t=1s

Dark field microscopy

- Need special equipment & training
- Rapid diagnosis
- Low sensitivity
 - o Short duration of leptospiremia
 - o Previous antimicrobial treatment
- False positive from debris

Not routinely use in clinical practice

PCR for bacterial DNA

- Specimen: blood, urine
 Transient
 Leptospiremia: first 10 days post infection
 - o Leptospiuria: after leptospiremic phase Intermittent
- Negative result: cannot rule out leptospirosis
 - o Low bacteria
 - \circ Immune response
 - Administration of antibiotics

PCR for bacterial DNA

- Positive result with a compatible clinical manifestation suggests leptospirosis
- Positive in healthy dog = chronic carrier state oRate 0-25% based on region
- Positive result should interpret in the light of clinical signs
- Recent vaccination does not interfere with PCR results

Microscopic Agglutination Test (MAT)

- Provides a quantitative antibody titer
- Panel (typically 6–8) of serovars

False negative if not include the infecting serogroup

Paired serum samples: 7-14 days apart

04X increase in titer = seroconversion, confirmed leptospirosis

o Acute- or convalescent- phase

Microscopic Agglutination Test (MAT)

- Careful interpretation: previous exposure vs.vaccination status
- Single high titer + clinical signs suggest
 leptospirosis
- Vaccination can induce a positive MATs to both vaccinal and nonvaccinal serogroups
- Serologic cross-reaction among serovars

Point-of-care assays

- Provide rapid diagnostic results
- Modified ELISA & qualitative detect lepto Ab
- Limitation as MAT
- Should be confirmed Paired MAT or PCR
- Need more studies

Diagnostic strategy

- No perfect test
- Need combination of tests or series
- 2 Consensuses recommendation (all 3 of these)
 O Appropriate clinical signs
 O PCR (blood & urine) before antibiotic
 O Paired MAT titers
- Point of care: valuable while waiting for PCR or MAT

Treatment of Leptospirosis

- Human = controversy
- Dogs = sparse studies
- Recommendation
 - Doxycycline 5 mg/kg q12h or 10 mg/kg q24h PO for 14 days
 - Dogs with gastrointestinal signs initially should be treated with an
 - Ampicillin 20-30 mg/kg IV q6-8h
 - Penicillin G 25,000-40,000 U/kg IV q6-8h
 - Amoxycillin 20-30 mg/kg IV q6-8h

Supportive care

- Depends on severity and affected organs
- Maintain hydration with IV fluid therapy
- Correcting electrolyte & acid-base imbalalance
- Anti-emetics
- Anti-hypertension
- Pain control
- Nutritional support

Treatment of AKI

Can be

o Polyuria

10x maintenance, > 20ml/kg/h

o Anuria/oliguria 1/2x maintenance, 1ml/kg/h

- Monitor UOP, body weight, RR, SBP q4-6h
- Gl signs: anti-emetics & gastroprotecttants
- Pain control: fentanyl, buprenorphine
- Dialysis when oliguria or anuria with subsequent life-threatening hyperkalemia or severe volume overload and advanced uremia refractory to medical management

Treatment of Hepatopathy

- Signs severe liver failure with hepatoencephalopathy, hypoglycaemic seizures or ascites
- Mostly supportive to improve hepatic function

Treatment of leptospiral pulmonary hemorrhage syndrome (LPHS)

- Main cause of death
- Plasma or whole blood transfusion
- Oxygen therapy & (mechanical ventilation, if available)

Treatment of hemostatic disorders

 Hemostatic disorders in lepto are multi-factorial origin
 Plasma transfusion

Hypocoagulable conditions from DIC

o Failure of coagulation factor synthesis

o Thrombocytopenia

No specific therapy

Doxycycline 5 mg/kg q12h or 10 mg/kg q24h for
 2 weeks

Hospitalized Patients

Daily monitor: clinical signs and

O Renal function

- Electrolytes
- o Acid-base status
- \circ PCV

o Plasma protein

CBC q 48 h to assess thrombocytopenia

Precautions to Take Around

Hospitalized Leptospirosis Patients

- Place warning signs on patient's cage
- Limit movement of patient through the hospital (although isolation is not needed)
- Wear personal protective equipment (gloves, disposable gown, eyewear/facemask) when handling the patient
- Do not pressure wash animal cages (to avoid aerosolization of leptospires)
- Minimize urinary contamination (walk the patient frequently)
- Clean with disinfectant solutions that will inactivate leptospires (e.g., bleach, iodine-based products, accelerated hydrogen peroxide, quaternary ammonium)
- Launder bedding normally with hot water and detergent

Monitoring patients

- Discharge dogs, if PU resolved with adequate hydration without additional fluid support
- Re-examination

o1 week after discharge

• Then 1-3 weeks until clinical stabilization

 Long term monitoring of renal function: q 1, 3, 6 months

Environmental control

- Minimize exposure to carriers
 OUrine PCR
- Minimize exposure to standing water
- Isolate possible-shedding dogs

 Treat carrier states with doxycycline
 Bacteria sensitive to detergent & drying
 - Iodine-based disinfectants are best
- Preventing of zoonotic transfer

Treat carrier states with doxycycline

Vaccination

- Prior to 2000
 - o Bivalent bacterins: canicola, icterohaemorrhagiae
- Since 2000 (in USA) 4 serovar vaccines
 - o Canicola, Icterohaemorrhagiae
 - o Pomona, Grippotyphosa
- 2000 purified subunit vaccine
- 2005 microfiltered vaccine
- 2010 two new culture-based vaccine

Vaccination questions

Duration of immunity – Do the vaccines last for a year?

o Yes! 15 months (Grosenbaugh & Pardo, 2018)

Side-effect (Type I hypersensitivity)

o Breed-associated?

- Do vaccinated dogs remain nonclinical carriers?
 o No
- Can MAT predict immunity?

o No

Do vaccines interfere with RT-PCR?

- Midence et al 2012
- 2 groups of 10 dogs each vaccinated with one or two different 4-serovar vaccines
- Blood collected pre-vaccinated, 3, 7, weekly to 8 weeks
- RT-PCR on blood of all dogs was negative for L.
 interrogans at all time points
- MAT ... typical vaccinated dogs
- Conclusion: recent vaccination <u>does not interfere</u> with the use of RT-PCR for the diagnosis of leptospirosis

Take home message

- Nonspecific clinical signs and laboratory parameters leading to overlook
- No perfect tests but need the combination to confirm
- Treatment of other diseases may also treat lepto!
- Monitoring carefully and continuously
- Duration of immunity last for 15 months